Whoever that is, I am a fan now. The way she switched to Canadian and American and then back to Australian without missing a beat… Was not expecting that! And yeah, the Canadian one in Saskatchewan was one of the first CCS projects and it set the bar very low for everyone else to follow.
This is sadly par for the course in green tech articles. Journalists who flunked high school sciences should not be reporting on this stuff, or at least consult with someone who has even a passing knowledge of physics.
Now regarding actual storage amounts, I have noticed utilities seem to target around 4 hours of capacity at full discharge. That seems to be the sweet spot for lithium ion at least. So by that measure, 1 GW would translate to 4 GWh…ish.
These battery farms are more about dealing with spikes in power demand than bulk energy storage. This is still a valuable role in that they can replace peaker plants which are often low-efficiency diesel monstrosities, but we still need something else for the latter application. Mechanical storage schemes like pumped hydro come up a lot in that discussion, though it’s possible something like flow batteries might be a better fit for this than lithium ion if you want to go the battery route?
I’m not an expert on any of this though, so feel free to correct me.